The kinetics of cellulose enzymatic hydrolysis
نویسنده
چکیده
Väljamäe, P. 2002. The kinetics of cellulose enzymatic hydrolysis: implications of the synergism between enzymes. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 781. 54 pp. Uppsala. ISBN 91-554-5479-8. The hydrolysis kinetics of bacterial cellulose and its derivatives by Trichoderma reesei cellulases was studied. The cellulose surface erosion model was introduced to explain the gradual and strong retardation of the rate of enzymatic hydrolysis of cellulose. This model identifies the decrease in apparent processivity of cellobiohydrolases during the hydrolysis as a major contributor to the decreased rates. Both enzyme-related (non-productive binding) and substrate-related (erosion of cellulose surface) processes contribute to the decrease in apparent processivity. Furthermore, the surface erosion model allows, in addition to conventional endo-exo synergism, the possibility for different modes of synergistic action between cellulases. The second mode of synergism operates in parallel with the conventional one and was found to be predominant in the hydrolysis of more crystalline celluloses and also in the synergistic action of two cellobiohydrolases. A mechanism of substrate inhibition in synergistic hydrolysis of bacterial cellulose was proposed whereby the inhibition is a result of surface dilution of reaction components (bound cellobiohydrolase and cellulose chain ends) at lower enzyme-tosubstrate ratios. The inhibition of cellulases by the hydrolysis product, cellobiose, was found to be strongly dependent on the nature of the substrate. The hydrolysis of a low molecular weight model substrate, such as para-nitrophenyl cellobioside, by cellobiohydrolase I is strongly inhibited by cellobiose with a competitive inhibition constant around 20 μM, whereas the hydrolysis of cellulose is more resistant to inhibition with an apparent inhibition constant around 1.5 mM for cellobiose.
منابع مشابه
Enhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment
Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...
متن کاملEnzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol
Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed. The hydrolysis process involves two stages: in the first stage, the O...
متن کاملOn Improved Mechanistic Modeling for Enzymatic Hydrolysis of Cellulose
An improved model for enzymatic hydrolysis of cellulose is developed that considers oligomer reactions with beta-glucanases, inhibition of oligomers to cellulases and enzyme decay processes during hydrolysis. Our oligomer reactions with beta-glucanases are modeled based on the enzymatic glucan chain fragmentation kinetics to describe the further fragmentation of oligomers in solution after bein...
متن کاملComparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production
Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...
متن کاملStudy of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process.
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002